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On the Prospects for Improved  
Tropical Cyclone Track Forecasts
Feifan Zhou and Zoltan Toth

ABSTRACT: The success story of numerical weather prediction is often illustrated with the 
dramatic decrease of errors in tropical cyclone track forecasts over the past decades. In a recent 
essay, Landsea and Cangialosi, however, note a diminishing trend in the reduction of perceived 
positional error (PPE; difference between forecast and observed positions) in National Hurricane 
Center tropical cyclone (TC) forecasts as they contemplate whether “the approaching limit of 
predictability for tropical cyclone track prediction is near or has already been reached.” In this 
study we consider a different interpretation of the PPE data. First, we note that PPE is different 
from true positional error (TPE; difference between forecast and true positions) as it is influenced 
by the error in the observed position of TCs. PPE is still customarily used as a proxy for TPE since 
the latter is not directly measurable. As an alternative, TPE is estimated here with an inverse 
method, using PPE measurements and a theoretically based assumption about the exponential 
growth of TPE as a function of lead time. Eighty-nine percent variance in the behavior of 36–120-h 
lead-time 2001–17 seasonally averaged PPE measurements is explained with an error model using 
just four parameters. Assuming that the level of investments, and the pace of improvements to 
the observing, modeling, and data assimilation systems continue unabated, the four-parameter 
error model indicates that the time limit of predictability at the 181 nautical mile error level (n mi; 
1 n mi = 1.85 km), reached at day 5 in 2017, may be extended beyond 6 and 8 days in 10 and 30 
years’ time, respectively.

https://doi.org/10.1175/BAMS-D-19-0166.1 
Corresponding author: Feifan Zhou, zhouff04@163.com 
In final form 5 July 2020
©2020 American Meteorological Society
For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

Article

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/15/21 03:13 PM UTC

https://doi.org/10.1175/BAMS-D-19-0166.1
mailto:zhouff04@163.com
http://www.ametsoc.org/PUBSReuseLicenses


A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y D E C E M B E R  2 0 2 0 E2059

AFFILIATIONS: Zhou—Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of  

Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 

Beijing, China; Toth—Global Systems Laboratory, NOAA/OAR/ESRL, Boulder, Colorado

Tropical cyclones (TCs) are large-scale (typically 100–2,000-km diameter), well-
organized warm core circulation systems that form in certain tropical ocean basins (e.g., 
Vigh and Schubert 2009; Komaromi and Doyle 2017). Depending on their height and 

intensity, they are carried as natural “tracers” by the background low- to midtropospheric or 
deeper-layer environmental flow until their circulation is disrupted by either strong vertical 
wind shear or a limitation in available surface energy flux (as they move over either colder 
water or land surfaces). Under favorable conditions, TCs have been observed to last up to 30 
days (Hurricane Research Division 2019). Landfalling TCs are arguably the most devastating 
naturally occurring meteorological phenomena.

Given their societal significance, success in the prediction of TCs has been noted 
as the crown jewel of the maturing practice of numerical weather prediction (NWP; 
Yamaguchi and Majumdar 2010). The error in the position of 3-day National Hurricane Center 
(NHC) TC forecasts for the Atlantic (northeast Pacific) basins, for example, were reduced from 
around 300 (225) nautical miles (n mi) in 1990 to 100 (67) n mi in 2018 (Lawrence 1990; 
Cangialosi 2019) (1 n mi = 1.85 km). The pace of track error reduction, however, was noted 
to lapse or even cease in recent years (Landsea and Cangialosi 2018, hereafter LC18). In their 
study, LC18 raised the question whether this decrease in the rate of error reduction should be 
interpreted as a sign that “the approaching limit of predictability for tropical cyclone track 
prediction is near or has already been reached.”

In this paper, we define predictability as the time period an initial error in a forecast made 
with a perfect model (like nature itself in an analog approach; Lorenz 1969a) reaches a pre-
specified level. There is a general consensus that with any level of initial error variance the 
atmosphere has a finite time of predictability (Lorenz 1969b). Whether the predictability time 
limit as initial errors go to zero is bounded [i.e., would never exceed a certain time limit, as 
Lorenz (1969b) proposed], however, is still an open question.

The general question of atmospheric predictability has been probed with a wide array of 
approaches, using theoretical considerations (e.g., Leung et al. 2019), simple model simu-
lations (e.g., Rotunno and Snyder 2008), and complex operational modeling systems (e.g., 
Zhang et al. 2019). The predictability of TCs as a specific phenomenon received less attention 
in the literature (see LC18). Of relevance here are studies by Plu (2011) and Aberson (1998). 
Using a lagged forecast difference [Lorenz 1982; applied globally, and reported here with 
the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast system] and an 
analog approach (Fraedrich and Leslie 1989; applied over the Atlantic basin), respectively, 
they found that the doubling time of TC track error variance is around 42 h. While this esti-
mate of linear error growth rate is a critical data point for TC track predictability, no attempts  
have been made to assess how the predictability time limit for TC track errors may expand 
as NWP, and in particular initial conditions influencing the evolution and transposition of 
TCs improve.

The present study revisits the question posed by LC18, whether the skill of current TC 
forecasts may be imminently curtailed by a firm bound on predictability. Examining the TC 
track error dataset used in LC18 (except the omission of tropical depressions), the following 
topics are explored: 1) How are TC track forecast errors expected to grow as a function of lead 
time? 2) Are operational TC track forecasts affected by model errors? 3) What is the trend in 
TC track analysis and forecast error reduction over the past decades? And 4) how may such 
errors behave in future decades?
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Positional error dataset
The center position of forecast cyclones is defined and uniquely determined using well-
established formulas based on the minimum in forecast sea level pressure and other known 
parameters (Schenkel and Hart 2012). The center position of the corresponding TCs in 
nature, however, is not known exactly. Most TCs form over open oceans and are only remotely 
observed. Satellite, and if available, other observations leave the center position ambiguous, 
especially in case of weak systems. Traditionally, responsible forecast centers produce a 
subjective analysis (or “fix”) for the center position based on all information available in real 
time, including, in rare occasions, even NWP guidance. After all observations are collected, 
the real-time position information is updated and a new, final subjective center position 
analysis is prepared that is called “best track” position (NHC 2019). It is well understood that 
errors remain in the final best track position; their exact level is unknown and has only been 
subjectively estimated (see Torn and Snyder 2012; Landsea and Franklin 2013).

Conventionally, TC track forecast performance is assessed as the distance between the 
exactly known forecast position (Pf) and the estimated best track position (Pb) of the corre-
sponding TC observed in nature:

 b
= −p fx P P , (1)

where ||···|| stands for great-circle distance and xp is the perceived track error. Note that due 
to the error present in the best track position (Pb), xp differs from what we call true forecast 
error ( )ftx , defined as the distance between the forecast (Pf) and the actual or true position 
(Pt) of TCs in nature:

 = −
f

t f tx P P . (2a)

Likewise, with Pb taking the place of Pf, true error can also be defined for the best track 
analysis position:

 = −
b

t b t
x P P . (2b)

Since xp is only an estimate (and as we will see in the next section, a biased estimate) of the true 
forecast error, following the nomenclature used by Leith (1978) and Pena and Toth (2014, PT14 
henceforth), from now on we refer to the traditionally defined track error [Eq. (1)] as “perceived 
error.”1 Perceived error is calculated and averaged here only for cases where a storm is diagnosed 
both in the forecast and observations.

Since true errors cannot be measured, the present study, like others such as LC18, uses perceived 
error to assess the quality of TC track forecasts. In particular, perceived track error in 12-, 24-, 36-, 
48-, 72-, 96-, and 120-h lead-time Atlantic basin “official” NHC forecasts is used over the years 
2001–19. Data from the first 17 years (2001–17) are used for development, while data from 2018 
and 2019 (yet unavailable at the time of development) are used for independent evaluation. As 
can be seen from Fig. 1a, the total number of cases for the developmental period decreases with 
longer lead times as storms identified at initial time may become 
too weak either (or both) in the forecast or respective observed 
data.2 For visual clarity, data for 12- and 24-h lead times are omit-
ted from Fig. 1. The number of cases per season varies between 
less than 20 at 120 h and close to 400 at 36 h, depending on how 
active each season was.

Consistent with results in Fig. 3 of LC18, perceived error 
exhibits an overall decrease over the years (Fig. 1c), while it 

1 For a broader discussion of various metrics 
assessing the quality of NWP analysis and fore-
cast products, see, e.g., the introduction section 
in PT14.

2 The main results of this study remain unchanged 
if the analysis is restricted to a smaller number 
of storms that persisted both in the forecast and 
observed data up until 5 days.
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shows an amplification as a function of lead time (Fig. 1d). The official NHC forecast (www.
nhc.noaa.gov/modelsummary.shtml) well reflects the performance of state-of-the-art NWP systems 
as it is a composite of NWP track guidance from four to five numerical products available 
from leading international centers [such as the National Centers for Environmental Prediction 
(NCEP), ECMWF, and the Met Office] that perform best in a few seasons just prior to each year, 
with only minor subjective modifications. As with other phenomena and metrics, there is a 
tendency in Figs. 1c and 1d for reduced errors and a reduced slope of error growth in more 
recent years. This has been partly attributed to NWP model improvements and an associated 
reduction in model related forecast errors (Bauer et al. 2015; Zhang et al. 2019), a topic we 
will return to in the sections below.

Methodology
Ideally, one would use true error, the variance distance between an analysis or forecast field 
and reality on scales resolved by a numerical model, to evaluate the quality of NWP guidance. 
As reality is directly inaccessible, most studies instead use perceived error measurements as a 
proxy for true error. In a series of recent studies, PT14 and Feng et al. (2017, 2020) showed how 
true error (described analytically via a few unknown parameters) can be inferred from known 
perceived error measurements. Using an inverse approach called Statistical Analysis and 
Forecast Error estimation (SAFE), perceived error is modeled as a function of the unknown true 
error parameters, using a priori knowledge (in the form of assumptions) about the behavior of 
analysis and forecast error. A variational minimization of the difference between measured 
and modeled perceived error (i.e., fitting error) results in the best estimate of the unknown 
true error parameters, while validating the assumptions underlying the error behavior model. 
SAFE has been tested and evaluated in a variety of simulated and real life settings.

Our objective is to arrive at a bias-free estimate of the true error variance in both the initial 
and forecast conditions of the official forecast, as well as in the best track position analysis. 

Fig. 1. (a),(b) The nominal (M) and independent [see Eq. (7)] number of verified TC forecasts at various 
lead times over the 2001–17 developmental period, respectively. (c),(d) Seasonal mean of perceived fore-
cast error measurements displayed over the 2001–17 period and as a function of lead time, respectively.
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None of these quantities are measured; only perceived forecast error measurements are avail-
able. The method used here for the estimation of true TC track error is a simplified version of 
SAFE that we call SAFE-s. First, we insert the true position into Eq. (1):

 ( ) ( )
22

2

t
= − = − − −p f b f t bx P P P P P P . (3a)

Considering Eqs. (2a) and (2b), and exploiting the law of sum of variances, we then express 
perceived error variance ( )2px  as a sum of the variances of true best track analysis error and 
true forecast error minus their correlation term:

 ( ) ( ) ( )2 2 2
2

2ρ= − = + −f b f b f b

p t t t t t tx x x x x x x . (3b)

Here ρ is the correlation between the true errors in the forecast ( )ftx  and the verifying best 
track analysis ( )btx . It is clear from Eq. (3b) that perceived error variance ( )2px  provides a biased 
estimate of the true error variance. Depending on the actual values of b

t
x  and ρ, perceived 

error may under- or overestimate f

tx .
For a bias-free estimate of the true error, we consider a set of equations like (3b) valid for 

each lead time i for which perceived error variance measurements are available. We note 
that the number of unknowns on the right side of the equations far outnumber the number 
of measured quantities on the left. To reduce the number of unknowns and facilitate the 
estimation of true error variance, we introduce a priori knowledge in the form of three basic 
assumptions, to be validated with the experimental data. As noted below, the assumptions 
listed here and in subsequent sections are motivated either theoretically, or by the scientific 
principle of parsimony, striving to find the simplest explanation for the behavior of perceived 
error measurements.

Assumption 1. First, we assume that the dynamics of the large-scale environmental circulation 
responsible for the transposition of TCs is well simulated in modern NWP models. Note that 
the failure of numerical models to faithfully represent finer-scale motions would not violate 
this assumption, as long as associated forecast errors do not project onto TC positional errors, 
or are already saturated (thus not growing any further). If assumption 1 is valid, it follows that 
the true error in the official forecasts is not affected by model induced errors but originates 
solely from initial (or analysis) error. Following the parsimony principle, we would introduce 
numerical model error related parameters only if an error behavior model without them fails 
to describe the experimental perceived error data.

Assumption 2. Next, we assume that the error in the initial condition (analysis) of NWP fore-
casts considered in the official forecast amplifies exponentially:

 ( ) ( )2
12

0

α −= i dti

t
x x e , (4)

where x0 and i

t
x  are the true analysis error and true forecast error at lead time i, and α is the 

exponential rate of forecast error growth in a time unit of a day. The exponential growth of 
linearly evolving perturbations and errors (i.e., the difference between two diverging trajec-
tory segments) is theoretically well established (Lorenz 1963) and can be interpreted as a 
response to a constant force associated with instabilities present in dynamical systems. Ever 
since Lorenz’s early paper, the exponential formula has been used in a long series of studies 
to describe forecast error growth (e.g., Leith 1978; Lorenz 1982; Dalcher and Kalnay 1987; 
Schubert and Suarez 1989; Peña and Toth 2014; Feng et al. 2017, 2020), sometimes along 
with other terms supposed to represent model related error.
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The growth of error in nonlinear systems, however, is generally found to be first tem-
pered, then inhibited by nonlinear processes related to the finite size of such systems (e.g., 
Lorenz 1982). Using the root-mean-square (rms) difference between gridded forecasts and 
verifying analysis fields, slower than exponential growth is observed as early as at 24-h lead 
time (Gilmour et al. 2001). This is because small, subsynoptic-scale forecast features become 
decorrelated from their observed counterpart early in the forecast process. Hence, error on 
small scales does not grow any longer, so that part of the error spectrum saturates early on 
in the forecast, leading to subexponential growth.

Surprisingly, no sign of nonlinear saturation emerges in the TC track forecast error data 
even up to day 5 (see Fig. 1d). This is due to the different nature of the track error metric 
[Eq. (1)]. With traditional gridpoint-based metric, once a forecast TC no longer overlaps with 
its observed counterpart, rms error may no longer grow, as beyond this point in time, rms 
error is insensitive to how far the forecast and observed storms drift from each other. In sharp 
contrast, the TC track error metric is sensitive only to the distance between the forecast and 
observed storms. On a planet with a single ocean basin at the latitudes of TC activity, for 
example, the initially exponentially growing errors in the position of long-lived forecast TCs 
would be nonlinearly bounded only by the finite size of the planet, the maximum positional 
error being half of the circumference of a latitude belt. TC track error thus appear to reflect 
and emphasize the largest-scale components of the global circulation.

Assumption 3. Finally, we assume that the error in the forecast and verifying analysis 
positions do not correlate beyond 24-h lead time [i.e., ρ = 0 in Eq. (3)]. PT14 found that 
with increasing lead time, ρ decreases but in 24 h it drops only to a value around 0.3. Note, 
however, that unlike in SAFE, here we use a verifying analysis (best track position) that is 
made independently from the NWP data assimilation system. Hence the true error in the 
verifying analysis (i.e., best track position; b

t
x ) and in the NWP forecast initial condition (x0) 

could be considered independent. To be conservative, we assume independence only after 
24-h lead time, considering that NWP analysis and forecast fields are available at the time 
TC specialists define the best track position. If this simplifying assumption 3 is valid, ρ at 
and beyond 36-h lead time can be assumed zero, so the third term in the right hand side of 
Eq. (3b) vanishes. This reduces the number, and facilitates the estimation of the unknowns 
in the simplified SAFE-s methodology used here.

Estimation algorithm. With the above assumptions, perceived error at and beyond 36-h 
lead time can be simulated with just three unknown quantities that describe the true error 
in the official initial (analysis, x0) and forecast guidance (α, growth rate of forecast error), as 
well as in the best track analysis ( )btx . Inserting error growth Eq. (4) into, and dropping the 
correlation term from the rightmost part of Eq. (3b) yields

 ( ) ( ) ( )22
1α −= +i dti b

p tx
2

x e x0 . (5)

To solve for the three unknowns, we consider a set of equations like Eq. (5) valid for five 
lead times: 36, 48, 72, 96, and 120 h, and in the first application of SAFE-s, minimize the 
distance between the seasonal average of perceived error measurements [lhs of Eq. (5)] and 
the perceived error simulated (or modeled) by the unknowns [rhs of Eq. (5)]:

 
( ){ }2

1
2 2 –1

2

min max
α −

>
= +i dt b i

t p i
i

J
2

x e x −  x 
 

w
0 (  ) ( )][ )( . (6)

The interpretation of x0 in Eq. (6) is discussed in the appendix. As explained by PT14, the 
use of the maximum (max, or L∞) norm ensures that a comparably good fit is achieved at all 
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lead times, while the coefficients SEM SEM= ∑i i ii
w  guarantee that each lead time is given 

appropriate weight in the minimization [Eq. (6)].
The uncertainty in the mean of a sample of error measurements for each storm in a season 
( ) ,1
1

=
 =  ∑M

i i jj
x M x  can be quantified as the difference between the sample-based mean 

and the expected value of the measured quantity, that is called standard error of the mean 
or SEMi. The introduction of weight coefficients wi is necessary as SEMi depends on both the 
number of sample points (M) and the standard deviation in the measurements (sdi), both of 
which vary greatly over lead time (i):

 

sd
SEM =

i
i if

M
, (7)

where ( ) ( )
2

,1
sd 1

=
= − −∑M

i i j ij
x x M , and fi is an adjustment factor to reflect the autocorrelation 

(ri) in the sample: ( ) ( )1 1= + −i i if r r . The corresponding number of independent sample points 
( )2M if  is shown in Fig. 1b.

As a quantitative estimate of the uncertainty in the seasonal mean of perceived error 
measurements, SEMi can also be used to assess the quality of perceived error simulations. 
Assuming that all three assumptions used in the formulation of Eq. (5) are valid and that fitting 
error (i.e., the difference between simulated and measured perceived error) follows a Gaussian 
distribution, the absolute value of fitting error, for example, must be below 68

SEM
i

 for 68% of 
the measurements [which is the probability that a Gaussian variable falls in a plus/minus one 
standard deviation interval around its expected value, ( ) ( )1 2 1 68

SEM
α − − ≤i dt i

p ix e x0 ]. It follows 
that as long as the percentage of fitting errors violating the above inequality is below/above 
an error level SEMs

i
, that is the estimation uncertainty associated with a preselected statisti-

cal significance level s [which is SEMi multiplied with the coordinate value of the Gaussian 
density function evaluated at 1 − (s/2)], the overall error simulation is consistent/inconsistent 
with the experimental measurement data. For further details, see PT14.

As an inverse method, SAFE-s uses perceived forecast error measurements to infer true 
initial (x0) and forecast error ( )itx . As discussed earlier, among many possible choices, we use 
TC track error as a metric of perceived forecast error. Since TCs are large-scale features, the 
error in their forecast position depends not only on the quality of the initial TC center position, 
but also of other features in NWP analyses (feeding into the official forecast; Plu 2011). So x0 
reflects the general quality of NWP analysis fields in areas affecting the future position of TCs, 
in a measure equivalent to initial TC positional error distance in the unit of nautical miles.

Error behavior in individual seasons
In this section SAFE-s is used to estimate the behavior of true error separately for each season 
over the 2001–17 period. To solve the minimization problem of Eq. (6) (and its variant in the up-
coming sections), we use the spectral projected gradient 2 (SPG2) method of Birgin et al. (2001). 
Results for two selected (the first and last in the developmental record) seasons are shown as 
examples in Fig. 2. In both cases, the seasonal mean of measured and simulated perceived 
errors (Figs. 2a,b) are closer than expected by chance at the 97% or lower levels of significance 
(Figs. 2c,d). This also holds true for all the other 15 seasons. In every season, true positional 
forecast error appears to grow exponentially. It follows that the behavior of perceived error 
measurements can be explained without invoking model related errors. In fact, 97% of the 
variance in the seasonal mean perceived error measurements (17 seasons × 5 lead times = 
85 points) is explained by the 51 estimated independent parameters (17 seasons × 3 = 51 un-
knowns; see first column in Table 1). We conclude that the experimental measurement data 
are consistent with assumptions 1–3 (no model error, exponential growth of true error, and 
no correlation between true best track analysis and forecast errors beyond 24-h lead time).
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The estimated unknown parameters for the 2001–17 seasons, displayed in Fig. 3, can 
be summarized as follows. 1) True initial (analysis) error decreases over the years with a 
somewhat diminishing rate, from above 60 n mi to just below 30 n mi; 2) the error in the best 
track analysis is only about 40% of that in the NWP analysis 
(and even a smaller percentage of that in the forecasts) and 
shows a similar decrease over the years from above 20 to below  
10 n mi;3 and 3) the 24-h forecast error growth rate appears 
to be rather stable over the years, showing only small year-
to-year fluctuations in the 1.35–1.61 range. Based on these 

Fig. 2. (a),(b) Measured (red line) and simulated (green dashed) perceived and estimated true error (blue; 
n mi) for the 2001 and 2017 seasons, respectively, as a function of lead time. (c),(d) As in (a) and (b), but 
for SEM97 (blue line) and the absolute fitting error (red). Note the difference in vertical scale between 
the 2001 and 2017 panels.

3 These estimates reflect seasonal mean values; 
the error for weaker and stronger than average 
storms, as discussed by Torn and Snyder (2012) 
and Landsea and Franklin (2013), may vary 
significantly.

Table 1. Parameters, fitting error, uncertainty, and effectiveness indicators for various estimation configurations. For 
further details, see text.

Number of parameters Uncertainty  
range51 35 20 4

Analysis error in 2017 (n mi) 25.23 24.98 27.71 27.84 5.1%

24-h growth rate 1.452 1.440 1.418 1.454 1.2%

1-yr reduction rate of analysis error 0.951 0.952 0.954 0.961 0.5%

Best track analysis error fraction 0.416 0.299 0.299 0.385 15%

Best track error in 2017 (n mi) 6.944 7.468 8.284 10.72 —

Number of outliers expected by chance  
(at 97% significant level)

2 2 2 2 —

Actual number of outliers for original  
(and derived) parameter estimates

0 (3) 0 (3) 0 (1) 2 —

Variance explained in 85 measurement data  
points by original (and derived) parameter estimates

97.1% (88.4%) 95.0% (88.5%) 93.3% (88.7%) 88.9% —
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observations, and in an attempt to describe the behavior of perceived and true errors with a 
vastly reduced set of unknown parameters, we introduce further assumptions (to be validated 
with experimental measurements in the next section).

Error behavior in past decades
Given the somewhat regular behavior of the three unknown parameters over the 17-yr experi-
mental period noted above, here we formulate additional assumptions about relationships 
between, and the behavior of the unknown parameters over the years. The introduction of 
these assumptions into SAFE-s simplifies the estimation and description of the unknown quan-
tities by reducing the overall number of unknowns from the 51 used in the previous section.

Assumption 4. As pointed out earlier, the subjective best track and objective NWP analysis 
methods are mostly independent. The two methods, however, utilize mostly the same set of 
observations (gradually enhanced and enlarged over the years), while both benefitting from 
improvements in data processing algorithms. Therefore, for simplicity, we assume that the 
true error variance in the best track analysis is a given fraction of the error variance in the 
NWP analysis (initial condition):

 
( ) 2

0 ,=b

tx γx
2

 (8)

where γ is the best track error variance expressed as a fraction of the NWP analysis error vari-
ance. Variability unexplained by the above equation will be assumed to be associated with 
sampling noise. With this assumption, the number of unknown quantities drops by 16, as the 
new ratio parameter replaces the 17 seasonal best track analysis error variance parameters.

Assumption 5. It is well understood that the quality of NWP analyses is a function of the effec-
tiveness of the observing, data assimilation, and modeling systems (e.g., Toth and Buizza 2018). 
Admittedly, even with a sustained effort, improvements in any of the three systems at any NWP 
center may be introduced at an uneven pace over the years [see Fig. 2.12 in Toth and Buizza (2018) 
as an example from ECMWF]. Recall, however, that the official TC forecast evaluated in the 
current paper is a subjectively weighted composite of forecasts from four to five different NWP 
centers. As changes introduced at various centers are usually uncoordinated, fluctuations are 
expected to be smoothed out. Consequently, we assume that the level and efficiency of NWP 
research and development affecting the official forecast is constant (i.e., unchanged) over the 
years. Theoretically, this implies that initial error in the official forecast improves each year 
by the same fraction, and deviations in the data from this rule are due to sampling noise. The 
constant rate of error reduction amounts to an exponential decrease of initial error over the 
years (with an asymptotic value of zero at time infinity):

Fig. 3. The three true error parameters as estimated independently for each season by SAFE-s: (a) analysis 
(initial) error, (b) best track error, and (c) 24-h amplification rate.
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)

2001

12 2

0 0=
j

β( j−
x x e , (9)

where β is the exponential rate of decrease in analysis error variance in a time unit of a year, 

2001

2

0x  is the analysis error variance in the first season in the record, and 2

0 j
x  is the analysis er-

ror variance in the jth season.
With the addition of assumption 5 [captured in Eq. (9)], the number of unknowns is further 

reduced by 15 as the new exponential analysis error decrease parameter replaces 16 of the 17 
original seasonal analysis error variance parameters. Given assumption 4 above, assumption 
5 implies that the best track analysis error variance also undergoes an exponential decrease 
over the years.

Assumption 6. The growth rate of true error in a given, possibly wide amplitude range is 
a reflection of the level of instabilities present in a dynamical system. Barring any notice-
able change from a slowly evolving climate, the expected value of error growth rate for any 
forecast system is constant. Though seasonal variations in the circulation such as the phase 
of El Niño–Southern Oscillation (ENSO; Wang et al. 2017) or the Madden–Julian oscillation 
(MJO; Madden and Julian 1971) may influence instabilities affecting the divergence of TC 
trajectories, for simplicity, here we assume that the TC positional error growth rate is constant 
over the 17 seasons studied. In any case, since MJO or ENSO variations are predictable only 
on seasonal time scales at most, for the decadal projection of TC error behavior, we have no 
better choice than setting the error growth rate at its climatologically expected value.

With assumption 6, the 17 seasonal growth-rate values are replaced with just one param-
eter, resulting in an additional reduction of the total number of unknowns by 16, down to 
just 4: the analysis error in 2001 ( )

2001
0x , the exponential rate of the decrease in analysis error 

variance (β), the exponential rate of growth in true forecast error variance (α), and the best 
track analysis error variance as a fraction of the NWP analysis error variance (γ).

Parameter estimates. For simplicity, in the previous section true error evolution was de-
scribed by 3 independent parameters, estimated in separate minimization procedures for 
each of the 17 seasons [51 total number of independent parameters; see Eq. (6)]. In contrast, 
here the unknowns for the same 17-season developmental sample are estimated in a single 
minimization. With the successive introduction of assumptions 4–6, the 85 seasonal mean 
perceived error measurements are simulated with a reduced number of unknowns (35, 20, 
and 4), as a function of not only lead time i = 3, …, 7, but also years j = 2001, …, 2017:

 

( ) ( ) ( ){ }( )2
1 1 12 2 2 1

0 0 , ,
3,7; 1,17

min max
− − − −

= =
 = + −  

β j α i dt β j

pi j i j
i j

J x e e γx e x w . (10)

The main results in the form of the 4 summary parameters and related information are reported 
in Table 1 using 35, 20, and 4 unknown parameters.4 For reference, results from the year-by-
year estimates reported in the previous section (51 unknown 
parameters) are also listed in Table 1. For cases when more 
than 4 unknowns are estimated, assumptions 4–6 are used 
in a posteriori manner to derive the missing summary param-
eters based on the estimated parameters (corresponding results are listed in parentheses). 
Specifically, the growth of the forecast error as a function of lead time, and the decrease of 
analysis error over the years is estimated by fitting the exponential formulas in Eqs. (4) and 
(9), respectively, while the overall ratio of the best track and NWP analysis is estimated as 
the mean of the ratios estimated independently for each year.

Importantly, for all new parameter configurations (35, 20, or 4 parameters), the number 
of actual outliers at the 97% significance level is below that expected by chance. This is an 

4 All results remain the same up to the fourth digit 
when the L∞ norm is replaced with the L2 norm.
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indication that the experimental perceived error measurements are consistent with assump-
tions 4–6: the ratio of the error in the best track and NWP analysis, and the growth rate of 
forecast error can be considered stationary, while the analysis error exhibits an exponential 
decrease over the years. The validity of the assumptions is also indicated by the relatively small 
amount of variance lost by their introduction. The 97% variance explained by the 51-variable 
error model drops only 2%–4% as each of assumptions 4–6 is introduced while the number 
of independent parameters drops from 51 to 35, 20, and 4. Using all assumptions and only 4 
parameters describes 89% of the total variance in the experimental data.

Based on a subjective review of fitting error and SEM outlier statistics for experiments with 
different norms and number of unknowns (listed in Table 1) we conclude that the minimiza-
tion with the maximum metric and using only 4 parameters may provide the best estimate 
of the unknown summary variables. Therefore, in the remainder of the study error estimates 
from this configuration will be used. The uncertainty in the estimated four parameters is 
quantified as half of the range of estimates listed in Table 1, expressed as a percentage of 
(and centered around) the best estimate. As seen from Table 1, the uncertainty is 1.2%, 0.5%, 
5.1%, and 15% in the growth rate of forecast error, reduction rate of analysis error, the 2017 
analysis error, and the best track fraction estimates, respectively. Note that the simulation of 
the 2018 and 2019 perceived error measurements (independent of the developmental period) 
by the four-parameter error model is statistically acceptable (i.e., fitting error smaller than 
associated SEM).

Projection into the future
In the previous sections, a compact, four-parameter model was introduced to describe TC track 
errors as a function of lead time and year. The six assumptions underlying the error behavior 
model have been validated by experimental data from the past. In this section, we explore 
how the same model can be used to quantify the expected quality of TC track forecasts in 
future years. Any extrapolation into the future, however, involves an additional, unverifiable 
assumption, that the relationships established on past data remain valid in the future. What 
does this entail for the six assumptions used above?

Assumptions for future projection. First, we note that assumptions 3 and 4 relate to the 
error in the best track analysis position. Since the best track analysis has no bearing on the 
quality (i.e., true error) of TC forecasts, and we are primarily interested in the true and not 
perceived performance of future forecast systems, these assumptions are irrelevant here5 
(except in the display of Fig. 4). Assumptions 2 and 6 pertain to the type of, and possible trend 
in error growth. As track error was found unaffected by model related errors, error growth is 
independent of forecast systems, hence reflects only the quali-
ties of nature. As discussed earlier, the exponential growth of 
forecast error is theoretically founded that we expect to hold 
even under a potentially changing climate [assumption 2 for 
projection (P-2)]. For simplicity, we also assume that the error 
growth rate observed over the past decades will hold into the 
future (assumption P-6). In reality, the rate of growth, however, may exhibit (presumably) 
small changes in response to possible changes in the level of atmospheric instabilities.

Unlike assumptions 2 and 6, the two remaining assumptions, 1 and 5, are contingent on 
engineered, and not on natural systems. Again, for simplicity, we assume that the quality 
of NWP systems will continue to improve, and in particular, analysis errors will continue to 
decrease into the future at the same rate observed over the past decades (assumption 5). We 
argue that maintaining the models’ quality of not affecting track forecast error (assumption 1) 
is a corollary to continued future analysis (and forecast) improvements (assumption P-5/1). Past 

5 Note also that the relatively large (15%) uncer-
tainty in the estimate of best track analysis error 
(Table 1) thus have no bearing on estimates of 
future error/predictability.
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reductions in initial error have 
been partially accomplished by 
periodic increases in the spatial 
resolution of NWP models. At 
each upgrade, the physical 
parameterization schemes rep-
resenting the statistical effect 
of natural processes unresolved 
by the coarser-resolution model 
(e.g., convection) on resolved 
scale motions are carefully 
replaced by the explicit han-
dling of such processes (e.g., 
the inclusion of nonhydrostat-
ic processes). The validity of 
assumption P-5/1 thus appears 
to be contingent on whether the 
effective resolution of global 
NWP models can be further ex-
panded in the coming decades. 
Given the blossoming research into fine-resolution limited-area modeling, and ongoing work 
on massively parallel and GPU computing, incorporating ever finer-scale processes in the 
dynamics and physics of numerical models, though not guaranteed, is a real possibility. 
Steady improvements in NWP performance (assumption P-5/1) is of course contingent on 
continued material and intellectual investments into the development of NWP observing, 
data assimilation, and modeling systems at rates of the past.

Skill projections below reflect a hypothetical scenario under the assumptions that the rates 
of daily forecast error growth (assumption P-6) and annual NWP improvements (assumption 
P-5/1) remain stationary in the future. The projections are also subject to the 0.5% uncer-
tainty in the best estimate of the annual rate of analysis error variance reduction (Table 1). 
Admittedly, P-6 and P-5/1 are unverifiable but are the simplest assumptions one can make, 
in the absence of related scientifically based information. The resulting error projection thus 
offers a reference for future error reduction, from which reality may deviate in case the actual 
future error growth, and/or forecast system improvement rates deviate from our default, “no 
change” assumption.

Projection of perceived error. As discussed in the introduction, the predictability of weather 
and TCs in particular can be assessed in a multitude of ways. As mentioned earlier, LC18 
reviewed TC track errors over the past decades to ascertain possible future behavior. In their 
Fig. 1, seasonal mean perceived error measurements are plotted for two TC basins. In Fig. 4, 
we examine the same 85 perceived error data points over the 2001–17 period that appear on 
the Atlantic panel of Fig. 1 in LC18 (except for the omission of tropical depressions, and the 
use of 36-h lead-time data in place of 24-h lead-time data). Unlike the linear interpolation used 
by LC18, the simulated perceived error lines in Fig. 4 are based on the four-parameter error 
model of SAFE-s. With a combination of Eqs. (5), (8), and (9), the evolution of perceived error 
at 36-h and longer lead times over the years can be simulated as a sum of true forecast 
error plus best track analysis error:

 
( ) ( ) ( )1 1 12 2 2

, , 0 0 ,
− − −= +β j α i dt β j

p i jx x e e γx e  (11)

Fig. 4. Measurements (closed and open symbols represent the develop-
mental period of 2001–17 and independent period of 2018–19, respec-
tively) as well as simulated and extrapolated (with best estimates of 
four-parameter model; continuous and dashed lines, respectively) of 
seasonal mean perceived error at 120- (green), 72- (red), and 36-h (blue) 
lead time, as a function of years.
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where xp,i,j is the perceived error at lead time i = 3–7 (36, …, 120 h) for years j = 1, …, 17 (2001, …, 
2017 calendar years). As illustrated by Fig. 4, the perceived error formula in Eq. (11) can be 
linearly interpolated or extrapolated only over shorter periods of time.

Figure 4 offers a visual representation of how just four parameters of the error behavior 
model can explain the bulk (89%) of the variance in the perceived error measurements. 
For a subjective evaluation, the independent perceived error data for 2018 and 2019 are 
also shown with open symbols. Contingent on the validity of assumptions P-6 and P-5/1, 
the extrapolated parts of the curves in Fig. 4 offer a projection of the expected behavior 
of perceived error into the future. Note that since best track errors are smaller than NWP 
analysis errors and therefore much smaller than forecast errors, the right-hand side of 
Eq. (11) is dominated by the forecast error term. It follows that the evolution of perceived 
error over the years, especially at longer lead times, is well approximated by exponential 
decay.

Projection of true error. Focusing now on the evolution of true error, we note that both forecast 
error [growth as a function of lead-time days; Eq. (4)] and NWP analysis error [reduction as a 
function of years; Eq. (9)] follow exponential behavior, with asymptotic values of zero at minus 
and plus infinity, respectively. The forecast and analysis error evolution curves thus differ 
only in a single exponent, α and β, respectively, 
whose numerical values depend on the choice of 
time units. With a simple horizontal stretching, 
the two curves can be perfectly overlain, attesting 
to the special type of similarity among exponen-
tial curves with a common asymptotic value. Note 
that both forecast error growth and analysis error 
reduction are assumed to be exponential with sta-
tionary exponents over the years. It follows then 
that the evolution of both true analysis and true 
forecast error, past and future, can be represented 
with a single exponential curve, using two sets of 
horizontal scales, one for the growth of forecast 
errors in days, and another for the reduction of 
analysis errors over years.

Figure 5 is a diagram just like that, based on 
the best estimate from the four-parameter error 
model. True analysis (dots) and forecast (solid 
line) error estimates for years 2001 (red) and 
2017 (blue), as examples, are highlighted. For 
reference, the corresponding 85 seasonal mean 
36–120-h perceived forecast error measurements 
from the developmental sample (black stars), are 
also displayed. The latter are the same points 
shown in Fig. 4, except for a horizontal trans-
position. Perceived error measurements for the 
two independent seasons of 2018 and 2019 (pink 
and green stars) are also shown for a subjective 
evaluation. As seen from Fig. 5, the reduction of 
analysis error over the 17-yr experimental period 
is equivalent to the accumulation of forecast 
error in about 1.7 days. Interestingly, a similar, 

Fig. 5. Exponential growth of true TC positional fore-
cast error and exponential reduction of true analysis 
error as a function of lead time (days; bottom horizon-
tal axis) and years (top horizontal axis), respectively, 
estimated for the past (solid line), and extrapolated 
into the future (dashed line) using the best estimate 
from the four-parameter error model. The red and 
blue dots indicate the estimated initial (analysis) er-
ror in 2001 and 2017, respectively. A comparison of 
the bottom and top horizontal scales indicates (cf. red 
and blue vertical dotted lines) that the lead time of 
forecasts with any given skill increased by about 1 day 
decade−1 in the past. For reference, seasonal mean per-
ceived positional error measurements are also shown 
as black stars for the developmental period (red and 
blue stars for 2001 and 2017, respectively), and pink 
and green stars for the independent 2018 and 2019 
seasons, respectively. For further details, see text.
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1-day lead time over a decade 
gain in forecast horizon is evi-
dent on the 500-hPa Northern 
and Southern Hemisphere ex-
tratropics annually averaged 
pattern anomaly correlation 
chart of Toth and Buizza (2018; 
skill in 1987 3-, 5-, and 7-day 
forecasts extended to 5, 7, and 
10 days in 17 July 2007, re-
spectively; see their Fig. 2.1). 
Whether the 1 day decade−1 
lead-time gain is also reflective 
of other large-scale atmospher-
ic processes in general will 
need to be explored in future 
studies.

Given the equivalence be-
tween a 1-day loss of forecast, 
and a 10-yr gain of analysis 
information, Fig. 6 captures a 
key message of this study: the 
time horizon of TC position 
forecasts is expected to expand by 1 day decade−1. In other words, any preselected level of 
skill that is maintained through day N lead time today is expected to be retained through 
day N + 1, 2, etc., in one, two, etc., decades into the future. As the future projection here is 
about relative (i.e., compared to current, and not absolute) skill, its validity is independent 
of the uncertainty in the estimates of initial (analysis) error variance. Since, as pointed 
out earlier, uncertainty in the best track position is not relevant here either, the projection 
depends only on the accuracy of the estimate for the rate of analysis error reduction. Given 
the ±0.5% (Table 1) uncertainty in the estimate of the rate of analysis error variance reduc-
tion, the uncertainty in the projection of TC positional forecast errors can be quantified as 
a 22–29-h gain of skill per decade. This projection is contingent on the error growth rate 
(assumption P-6) and the investments into NWP development remaining steady (assumption 
P-5/1), as observed in past decades.

Conclusions
Tropical cyclones (TCs) are well-identifiable, coherent circulation patterns with potentially 
large societal impact. The predictability time limit of the atmosphere (i.e., the time period 
forecast error variance remains below a predefined threshold, given an initial error variance) 
has been evaluated, conditioned on the presence of such phenomena both in forecasts and 
observations. Analysis and forecast error variance with respect to reality (i.e., true error) 
was estimated using a simplified version of the inverse Statistical Analysis and Forecast 
Error method (SAFE-s). Perceived error variance measurements in the position of TCs in 
the NHC official forecast as compared to the “best track” analysis was related to true error 
variance using a series of assumptions, validated by the same experimental measurements. 
The positional error norm used emphasizes the large-scale circulation of the atmosphere 
and at initial time reflects not only the error in the initial position of the storm but also in 
its surroundings affecting the TC’s position down to 5 days lead time. Key outcomes are 
as follows:

Fig. 6. Lead time until which true forecast error remains below 181 n 
mi (reached at 5 days in 2017) as simulated (solid line) and extrapolated 
(dashed line) based on the best estimate from the four-parameter error 
model. Perceived error measurement-based, linearly interpolated lead 
times for past years [closed and open diamond for dependent (2001–17) 
and independent (2018–19) seasons, respectively] are also shown for 
reference. For further details, see text.
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• With just four parameters, the error behavior model of SAFE-s explains 89% of the vari-
ance in the 36–120-h lead time 2001–17 seasonal mean perceived error measurements. 
The best estimates for the true initial and best track analysis errors in 2017 are 28 and 
11 n mi, respectively, and for the growth of forecast and the reduction of analysis errors 
from day to day and year to year are 1.45 and 0.96, respectively.

• Simulated perceived error offers a statistically acceptable fit to perceived error measure-
ments, indicating that the assumptions behind SAFE-s are consistent with the experimental 
measurement data. The results suggest SAFE can be used to estimate true errors not only 
when perceived errors are evaluated against the same analysis that NWP forecasts are 
initialized from but also when mostly independent, observationally based analyses are 
used as reference for truth.

• Perceived error measurements at and beyond 36-h lead time can be fully explained as a 
sum of exponentially growing initial errors (i.e., true forecast error) and the error in the 
verifying (best track) analysis, without the need for a model-error-related term. This is an 
indication that the large-scale dynamics of the atmosphere that affect the propagation of 
TCs as naturally occurring tracers is well captured by modern NWP models (i.e., no model-
related track error; assumption 1).

• The first-ever objective estimate of the true error in the best track position of TCs is about 
11 n mi in 2017, or about 38% of the error in the NWP analysis position (assumption 4).

• Initial (analysis) error is found to follow exponential growth in the official NHC forecast 
(that is based on a subjectively weighted composite of the best-performing NWP forecasts; 
assumption 2).

• Even at day 5 lead time, forecast error shows no sign of nonlinear saturation. This is re-
lated to the chosen norm and condition (i.e., the distance in the position of TCs when a TC 
is present both in the forecast and observations). With this norm, the steady force arising 
from atmospheric instabilities that make the observed and forecast storms diverge would 
remain effective until the distance of the storms approaches the order of magnitude of half 
the circumference of the latitude belt of TCs (approximately 9.800 n mi at latitude 25°). 
This is far larger than 5-day track errors even in the early part of the experimental period 
(~350 n mi).

• As error amplification remains stationary at about 1.45 day−1 over the 2001–17 experimental 
period (assumption 6), a single exponential curve can be used to describe the growth of 
positional error in all seasons studied.

• The error in the initial, analyzed condition of the official forecast, expressed in terms of TC 
positional uncertainty, exponentially decreases from year to year at a steady rate of 0.96 
(assumption 5). This indicates that the sustained expenditures and talent invested into the 
development of the NWP observing, data assimilation, and modeling systems provides a 
steady force, yielding consistent improvements, leading to about a day extension of skill 
over a period of 10 years.

• It follows that if investments and talent dedicated for NWP improvements remain available 
as in the past, and the growth of errors also remains unchanged, the skillful range of TC 
prediction, given the uncertainty in our estimates, is expected to be extended in the future 
by 22–29 h decade−1.

In conclusion, while linear interpolation lines, as noted by LC18, provide noisy estimates 
unsuitable for extrapolation, the four-parameter error model developed using all available 
perceived error measurements allows the projection of TC track errors, albeit under hypotheti-
cal scenarios, into the future.
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Discussion
For how long can forecasts improve? It has been theorized that even if in the distant future 
analysis errors could be so much reduced that errors would be dominated by inaccuracies 
in kilometer-scale processes (switch from 2D to 3D turbulence, the realm of convection), or 
at most by the viscosity of the atmosphere (dissipation effect; Lorenz 1969b), the growth of 
errors at correspondingly small amplitudes would increase so dramatically that the extra 
lead-time gain in predictability from improved initial conditions would become negligible. If 
true, this could be called a hard “bound” on atmospheric predictability. But how distant that 
point may be in the future? Zhang et al. (2019) found no evidence of a significant increase 
in the rate of error growth down to about a threefold decrease below today’s initial error (as 
indicated by the quasi-linear growth of error on the logarithmic scale in their Figs. 3 and 4, 
see blue symbols in the range of 1.5–5-day lead time). Assuming that the current rate of 0.96 
annual reduction in initial errors is maintained, the 1-day extension of skillful prediction per 
decade projection may be valid for at least 25–30 years into the future.

The influence of ENSO and climate change on error growth. As indicated in Table 1, there 
is only a minimal loss in explained variance as the SAFE-s error behavior model is simplified 
first with the introduction of assumption 4 (error variance in best track analysis is constant 
fraction of analysis error variance, 2% loss), and then assumption 5 (exponential reduction of 
analysis error, an additional 2% loss). In either case, we suspect that most of the unexplained 
variance may be associated with random sampling noise in the perceived error measurements. 
When assumption 6 of a constant growth rate is introduced, the loss of explained variance, 
though still small, is noticeably higher (over 4%) than with the other two assumptions. We 
expect that part of this unexplained error variance may be associated with seasonally varying 
levels of instabilities associated with different phases of ENSO (and possibly the Madden–
Julian oscillation). Such a possible connection will need to be explored in future studies. On 
the other hand, faster error growth under possibly more unstable future climatological condi-
tions (manifested, e.g., by possibly stronger wind circulation; Zeng et al. 2019) may shorten 
the predictability time horizon (i.e., lead time of useful forecasts shortened), and slow the 
extension of such a limit over the years.

No model-related error in TC track forecasts? An interesting, and possibly controversial 
outcome of this study is that numerical models themselves may not impart any noticeable error 
into TC track forecasts. Correspondingly, track errors may originate exclusively from initial 
error. In a series of SAFE error estimation studies, PT14 and Feng et al. (2017, 2020) found no 
indication for model related errors in extratropical circulation forecasts either.6 How is this 
possible, given the countless studies demonstrating a range of problems with NWP models?

We first note that having no model related component in track 
or large-scale circulation errors is not an indication that NWP 
models are perfect. No model-related track error only implies 
that the simulation of large-scale dynamics responsible for 
the transposition of TCs, or for the evolution of synoptic-scale 
flow may be near perfect. At the same time, many finer-scale 
processes may not be represented well or at all in global NWP 
models. We hypothesize that due to their size, many of these finer-scale processes would not 
have a material effect on how realistically the large-scale dynamics is captured in models. In 
other words, it is only the statistics of finer-scale processes that directly affect the dynamics 
of the large-scale circulation. This notion is born out by the success of NWP models that, by 
necessity, parameterize the effects of all motions with scales finer than the effective spatial 
resolution of the models. Finer-scale atmospheric processes, though critical for the successful 

6 Some slow processes in the tropics are reported to 
be missing from an NCEP model by PT14. If these 
are in the deep tropics, however, they would have 
no effect on TC translation governed by subtropi-
cal and then midlatitude flow.
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short-range prediction or climatological simulation of important characteristics of weather 
(e.g., convective bands, tornadoes), may not directly affect, for example. the movement of a 
TC as a whole.

Nevertheless, the earlier and current SAFE results are in apparent conflict with a long 
series of studies concluding that beyond the dynamically “internal” divergence of model solu-
tions, forecasts are also affected by an “external” error presumably due to model deficiencies 
(Leith 1978, 1982). In particular, the growth of forecast error, especially at short ranges, 
has been found consistently and significantly higher when forecasts are compared against 
verifying analysis fields (this error is referred to as “perceived error” in the present study), as 
opposed to another forecast [started from an earlier or later, or a perturbed initial condition—
referred to as internal error (e.g., Lorenz 1984; Savijarvi 1995)]. The faster growth of perceived, 
compared to internal error is commonly attributed to the emergence of model related errors, 
usually without identifying any specific mechanism, and is generally considered as a telltale 
sign of model imperfection.

In their discussion, Feng et al. (2020) offer an alternative explanation for the superexponen-
tial growth of perceived, versus exponential growth of internal (or in their parlance, true) short 
range forecast error. They demonstrate an initially strong, then decaying correlation between 
error in forecast and corresponding verifying analysis fields [cf. Eq. (3) in present paper]. This 
results in biases when short range true error is estimated by perceived error. In particular, true 
error is underestimated, while its growth is overestimated. A serious overestimation of error 
growth based on perceived error behavior is indeed found both in operational and simulated 
[observing system simulation experiment (OSSE)] forecast environments [see Figs. 7 and 3 in 
Feng et al. (2020), respectively]. This finding may question the need for, and the validity of 
the prevalent “external” model error hypothesis for explaining the superexponential growth 
of perceived error as compared to the exponential growth of “internal” differences between 
lagged or perturbed ensemble forecasts, or true error. The topic of model related error certainly 
deserves more exploration in future studies.

Comparison with previous estimates. To our knowledge, of the four unknown param-
eters in Table 1, the annual decrease and the size of the true initial position error have 
not been estimated before. Subjective positional error estimates for TCs and hurricanes 
combined for the 2000–09 (Torn and Snyder 2012; real time operational position) and 
2010 (Landsea and Franklin 2013; best track position) seasons are around 26 and 20 n mi, 
respectively. These estimates appear to be somewhat larger than the 15–20 and 14–19 n mi 
range estimates from the present study, for the respective periods (cf. best track error and its 
uncertainty estimates in Table 1).

As for NH TC track forecasts, with a comparison of lagged forecasts from ECMWF, Met 
Office, and MeteoFrance, Plu (2011) estimates that error doubling is in the range of 30–50 h. 
The estimate with the best performing, ECMWF system is 42 h, which equals to an amplifica-
tion of 1.49 over a 24-h period, identical to Aberson’s (1998) estimate using naturally occur-
ring analogs, and relatively close to the 1.454 estimate in Table 1 of the present study. Note 
that Plu’s numbers refer to all NH basins and are admittedly influenced by serial correlations 
among the intercompared forecasts, leading to a possible overestimation of growth rate, thus 
precluding any precise comparison with results reported in Table 1.

Aberson’s 1.49 24-h growth-rate estimate, however, reflects the behavior of a large number 
of Atlantic TCs observed over the 1956–95 period, warranting a more careful comparison. 
We first note that though Aberson’s 1.49 amplification factor is close to, it is clearly out of the 
1.432–1.476 range estimated in the present study (cf. the growth rate and uncertainty range 
in Table 1). Model-based predictability results are often conceived as too optimistic—How 
would a purely observationally based study find a predictability horizon beyond that found 
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in the present SAFE-s study, using model-based NHC official forecasts? Why would the official 
forecasts exhibit slower error growth than Aberson’s (1998) analog method? Part of the 3% 
difference between 24-h amplification rates in Aberson’s (1998) and the present studies may be 
explained by the sampling of different circulation regimes in the two nonoverlapping datasets 
used. The faster growth rate between TC trajectories reported by Aberson (1998), however, may 
be more due to the methodologies used. Aberson (1998) intends to assess the growth rate of 
errors developing between the tracks of initially close-by storms. As his 40-yr observational 
period is way too short for a storm to emerge in close proximity to another storm (Lorenz 1969a) 
and Aberson (1998) applies a technique suggested by Fraedrich and Leslie (1989), where all 
storm trajectories are transposed in space so that their initial positions are exactly collocated. 
The observed storms of course develop and move under conditions in their original position, 
scattered across the Atlantic basin, and not under the conditions to where they are collocated. 
The divergence rate of their initially collocated tracks therefore reflects not only the internal 
unstable dynamics of the atmosphere, but also the diversity of climatologically prevailing 
conditions over different parts of the Atlantic basin from where initial storm positions are 
collocated (e.g., sun elevation, proximity to landmasses, large-scale environmental flow), 
which would be near identical without the artificially relocation of the storms.

In the parlance of NWP modeling, the relocation amounts to a misspecification of the large-
scale environmental conditions, triggering an extra level of divergence between TC trajecto-
ries, beyond what is due to naturally occurring instabilities at any locale. Though based on 
observational data only, the transposition of TCs in Aberson (1998; and in the original study 
of Fraedrich and Leslie 1989) amounts to the introduction of a methodological approximation 
akin to “model error” in NWP. We speculate that this methodological approximation in the 
analog study may lead to an error growth faster than what would be observed with a perfect 
model. Note that even a more advanced analog approach was found to produce forecasts with 
significantly faster error growth than a state-of-the-art NWP system over the 1991–2000 time 
period (see Fig. 37 in Fraedrich et al. 2003). Paradoxically, in this 
case limited resolution, thus necessarily imperfect NWP models 
may offer a better representation of the large-scale dynamics 
of TC movements than a model based on atmospheric analogs 
(produced by nature itself).
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7 We attribute the higher NWP errors (most visible 
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are virtually nonexistent in statistical forecasts.
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Appendix: The choice of forecast error metric
It is well understood that due to the chaotic nature of the atmosphere, errors in weather 
forecasts grow until all forecast skill is lost (e.g., Lorenz 1969b). This is a consequence of 
the divergence of initially close-by trajectory segments in the phase space of the atmosphere 
and its models. The rate of divergence, hence the quality of forecasts can be evaluated by a 
vast array of metrics (e.g., Jolliff and Stephenson 2003). Depending on the distance norm, 
variable, and domain chosen, each metric emphasizes different aspects of the same observed 
(and forecast) circulation. Consequently, the apparent performance of forecast systems is 
generally metric dependent.

It is important to recognize that the subjective choice of metric does not influence, nor 
fully reflect the objective evolution of the observed and forecast circulations, or their dif-
ference (from which various error metrics are derived). From the perspective of nature, the 
choice of metric is always arbitrary, driven by study objectives and practical considerations. 
As we understand from adjoint and other sensitivity studies (e.g., Wu et al. 2007) that the 
track of TCs (and associated forecast errors), for example, depend not only on initial position 
(or error) of TCs, but also on their intensity and broader environment, which the TC track 
error metric does not reflect.

The choice of TC track error as a metric in the present study was motivated by its long 
term use and the availability of historical records. It follows that in SAFE-s, where initial error 
is estimated from forecast error measurements using an inverse method, initial error (x0) is 
affected by the quality of not only the TC center position, but also of other features in NWP 
analyses (feeding into the official forecast) that have an effect on the quality of ensuing TC 
position forecasts. All these effects are reflected in the metric of positional error of the center 
of the TC, in the units of nautical miles. This is consistent with the common knowledge [also 
discussed by Plu (2011) and Landsea and Franklin (2013)] that forecast TC position (and its 
error) depends more on the environment, and less on the position of a TC at initial time.
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